Telegram Group & Telegram Channel
Чем LSTM отличается от традиционной RNN?

▫️Рекуррентные нейронные сети (recurrent networks, RNN) были придуманы для работы с последовательностями данных, такими как текст или временные ряды. Чтобы сеть могла хранить информацию о предыдущих токенах, было введено понятие внутренней памяти или скрытого состояния (hidden state). В простейшем случае оно выражается одним вектором фиксированной размерности. На каждом шаге в сеть подаются данные, при этом происходит обновление скрытого состояния. После этого по скрытому состоянию предсказывается выходной сигнал.
✍️ Традиционные RNN страдают от проблемы исчезающего градиента, когда в процессе обратного распространения ошибки градиенты становятся настолько малыми, что обучение становится очень неэффективным для длинных последовательностей.
▫️Сети с долговременной и кратковременной памятью (Long short term memory, LSTM) были созданы для решения вышеозначенной проблемы. Все рекуррентные сети можно представить в виде цепочки из повторяющихся блоков. В RNN таким блоком обычно является один линейный слой с гиперболическим тангенсом в качестве функции активации. В LSTM повторяющийся блок имеет более сложную структуру, состоящую не из одного, а из четырёх компонентов. Кроме скрытого состояния, в LSTM появляется понятие состояния блока (cell state). Hidden state же теперь передаётся наружу (не только в следующий блок, но и на следующий слой или выход всей сети). Также LSTM может добавлять или удалять определённую информацию из cell state с помощью специальных механизмов, которые называются gates.

Всё это позволяет LSTM более тонко контролировать поток информации, улучшая способность сети обучаться и стать более устойчивой к проблемам, связанным с градиентами.

#глубокое_обучение



tg-me.com/ds_interview_lib/196
Create:
Last Update:

Чем LSTM отличается от традиционной RNN?

▫️Рекуррентные нейронные сети (recurrent networks, RNN) были придуманы для работы с последовательностями данных, такими как текст или временные ряды. Чтобы сеть могла хранить информацию о предыдущих токенах, было введено понятие внутренней памяти или скрытого состояния (hidden state). В простейшем случае оно выражается одним вектором фиксированной размерности. На каждом шаге в сеть подаются данные, при этом происходит обновление скрытого состояния. После этого по скрытому состоянию предсказывается выходной сигнал.
✍️ Традиционные RNN страдают от проблемы исчезающего градиента, когда в процессе обратного распространения ошибки градиенты становятся настолько малыми, что обучение становится очень неэффективным для длинных последовательностей.
▫️Сети с долговременной и кратковременной памятью (Long short term memory, LSTM) были созданы для решения вышеозначенной проблемы. Все рекуррентные сети можно представить в виде цепочки из повторяющихся блоков. В RNN таким блоком обычно является один линейный слой с гиперболическим тангенсом в качестве функции активации. В LSTM повторяющийся блок имеет более сложную структуру, состоящую не из одного, а из четырёх компонентов. Кроме скрытого состояния, в LSTM появляется понятие состояния блока (cell state). Hidden state же теперь передаётся наружу (не только в следующий блок, но и на следующий слой или выход всей сети). Также LSTM может добавлять или удалять определённую информацию из cell state с помощью специальных механизмов, которые называются gates.

Всё это позволяет LSTM более тонко контролировать поток информации, улучшая способность сети обучаться и стать более устойчивой к проблемам, связанным с градиентами.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/196

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA